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A numerical method is developed to integrate the stochastic dif-
ferential equatians that arise in a particle method for madelling
turbulent flows. These equations present several challenges, the
foremost being the presence of multiple time scalas, the smallest
of which can be significantly less than an acceptable time-step size,
At. The essence of the approach adopted is to transform and decom-
pose the gquations so that the stochastic components (which can-
Lain the small time seales) appear as stricty lincar stochastic differ-
ential equations. Analytic solutions to these equations (with frozen
coefficients) are then exploited to produce a stable and accurate
scheme. When the method is used to advance the properties of N
particles, the resulting numerical error can be decomposed into
three contributions: statistical error, bias, and time-stepping error.
Comprehensive tests to study these errors are reported for two
test cases. A novel variance-reduction technique is described that
significantly reduces the statistical error, which scales as N2, In
general, the bias is smaller, and scales as N {in accord with a
simple analysis). The time-stepping error is less than 1% for a non-
dimensional time step of %—which may be several times larger
than the smallest time scale. Over the range of time-step size investi-
gated, the dominant time-stepping error varies as At¥, The method
has the requisite stability, accuracy, and efficiency for incorporation
in multi-dimensional particle methods. ® 1995 Acagemic Prass, Inc.

1. INTRODUCTION

There is continuing progress in the development and applica-
tion of turbulence models to calculate the properties of turbuient
flows of enginecring significance [, 2}, Flows of dillerent
complexity require turbulence models providing different levels
of deseription of the turbuleni phenomena. Most industrial and
corpmercial turbulent-tow cades are based on (al mas a lwo-
equation wrbulence model, such as & — & [3, 4]. Several differ-
ent and significant shortcormings of two-equation models have
been known for over a decade {5], thus motivating the develop-
ment of models that provide a fuller description of the turbu-
lence. For chemically inert lows, Reynolds-stress (or second-
moment) closures (e.g., [6]} can provide significant improve-
ments. For reactive flows {especially combustion) pdf methods
{7-11] have the overwhelming advantage of representing reac-
tion exactly—without modeling assumptions. Even for inert
flows, pdll methods have several advantages. such as treating

convective transport exactly and representing the distribution
of turbulent scales [12, 13, 11].

Moment closures (i.e., ¥ — g or Reynolds-stress) result in a
sct of about 10 partial differential equations, which are solved
numerically by finite-volume methods. While these models
have been used for 20 years, there has continually been concern
about the level of numerical error in the computed solutions
(e.e. 14D, Over the years, improved numerical methods have
been developed (e.g., |15, 16]), and faster computers have
allowed finer grids to be used. While it is probable that accurate
numerical solutions can now be obtained (at least in two dimen-
siong), there is regrettably little or no incontrovertible evidence
to support this opinion.

Compared to moment-closure model equations, the mod-
elled, pdf equations have a completely different structure, and
different numerical solution techniques are employed. Specifi-
cally, Monte Carlo methods are used in which the pdf is repre-
sented by an ensemble of particles. In the first method developed
[17] the particles are located at grid nodes in physical space,
whereas in a later method [8] (now preferred) the particles are
continuously distributed. In application to simple flows, the
convergence and accuracy of these methods have been demon-
strated [17-19]. The methods have also been applied to several,
complex 2D and 3D flows (e.g., [20-25]).

These numerical solutions of the modelled pdf equations
have demonsirated the favorable attributes of pdf methods for
turbulent Mows (both with and without reaction), and they have
proved the feasibility of applying the method to complex 2D
and 3D {flows. At the same time they have also revealed the
need, benelid, and possibility of 4 more accurate and efficient
numerical method. This paper reports the first step in the devel-
opment of such an improved particle method.

The numerical method developed here is for the modelled
equation for the joint pdf of velocity and turbulence frequency
[12, 13, I1]. This single equation provides a complete model:
that is, apart from fluid properties and initial and boundary
conditions, no additional inputs are required. This is in contrast
to pdf methods based on the joint pdf of compositions (or of
velocity and compositions) which require additional turbulence-
model equations. Consequently, for the velocity-frequency joint
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pdf equation considered here, a self-contained particle method
can be developed, rather than the hybrid particle/finite-differ-
ence methods necessitated by incomplete pdf models.

A particle method for multi-dimensional non-reactive flows
requires three basic ingredients: an integration scheme to ad-
vance the particle properties in time; a method of representing

"mean fields {e.g., the mean velocity fields), and of estimating
them from the particle properties; and an algorithm to determine
the mean pressure field and to enforce the mean continuity
equation. For flows with complex reactions (e.g., combustion)
a fourth required ingredient is an efficient means of incorporat-
ing the effects of reaction on the particle compositions. The
contribution of the present work is to provide the first ingredient.
That is, we develop and demonstrate here an accurate numerical
method for the time-integration of the stochastic differential
equations for the particle velocity and frequency. This aspect
of the overall problem is isolated by restricting attention to
inert statistically homogeneous turbulence. Nevertheless, the
method is developed with the extension to the general case
in mind.

The accurate numerical integration of stochastic differential
equations (sde’s) is much more difficult than the corresponding
task for ordinary differential equations (ode’s); and a special-
ized literature on the topic has emerged (see, e.g., {26-301).
The standard problem generally considered is of the form: given
coefficients a(x, ¢) and k{(x, r}, an initial condition X{(0) = x,,
and a stopping time T > 0, integrate the stochastic differen-
tial equation,

dX(t) = a(X (@), ydt + b(X(), 1) dAW(), (1

to obtain X(T). Here W(r) is a Wiener process.

The problem encountered here, however, is somewhat differ-
ent. Some of the ingredients are contained in the following
model problem: given coefficients (different from those above)
a(x, y) and &(x, y), a function ¥{x), an initial condition
X(0) = x,, and a stopping time T > 0, integrate the stochastic
differential equation

dX() = a(X(0), (Y(XEN) dt + b(X(0), (Y(XEH) dW(D),  (2)

to obtain X(T}. The essential difference between (1) and (2) is
that in (2) the coefficients depend on the mean of a function
of the process, i.e., (Y(X(£))).

Instead of standard techniques applied to (1), here, by ex-
ploiting the particular structure of the sde’s we use a different
approach, namely, to transform and decompose the equations
so that {on each time step) the stochastic components can be
advanced by an approximate arafytic solution. This leads to a
two-stage predictor—corrector scheme that is both accurate and
robust (i.e., stable for very large time steps). In addition, novel
variance-reduction techniques are described that reduce the
statistical error involved in estimating means {e.g., {Y(X(H)})
from a finite ensemble of samples.
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The stochastic turbulence-model equations are presented in
the next section, and then an overview of the particle method
is provided in Section 3. In the following two sections the time-
integration schemes are presented for the frequency and for
the velocity equations. Two test cases are considered: sheared
Gaussian turbulence (for which there is an analytic solution)
and a more severe test with bimodal initial conditions. Results
for these cases (reported in Section 6) clearly demonstrate the
stability, convergence, accuracy, and efficiency of the method.
The paper closes with discussion and conclusions.

2. STOCHASTIC MODEL EQUATIONS

Before presenting the model equations, the class of flows
considered is defined and the notation is introduced.

We consider constant-density, homogeneous turbulence. At
position x and time ¢ the fluid velocity U(x, f)—which is a
random variable—can be decomposed into its mean (or mathe-
matical expectation) {U(x, ¢)) and fluctuation u(x, #):

Ux, 1) = (U(x, 1)) + u(x, £). 3
Without loss of generality (for homogeneous turbulence) we
take (U) to be zero at the origin ({U(0, )y = 0). Then, since
a necessary condition for homogeneity is the linearity of (U)
in x, the mean velocity field is fully described by the velocity-
gradient tensor

T, = ai (Uix, ). @)
X

In view of homogeneity, the Reynolds stresses {u;i4;) and the
turbulent kinetic energy {(k = %u,u;)) depend on 7 only.

With v being the kinematic viscosity, the pseudo-dissipation
is defined by

alvlg du;
eX, ) =v——,

dx; dx; )

and then the turbulence relaxation rate or frequency is defined by

wiX, N = e(x, NIk{D). {6)
It may be noted that (X, ) is non-negative.

In the moedel considered [12, 13], the fundamental representa-
tion of the turbulence is the (one-point, one-time, Eulerian)
joint pdf of the fluctuating velocity {u) and frequency (w),
which is denoted by f(v, 0; ). Here v = {v,, vy, 03} and 8 are
sample-space variables corresponding to w and w. Thus f(v, §;
1) is the probability density of the compound event {u(x, ¢) =
v, wix, ) = 0}

Moments, and other means, can be obtained by integrating
the joint pdf. For example,
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JS Fv, 0 0vavdo = (ux, ) =0, ~ (7) and the coefficients are defined by
= —% 5+ LTy + TleP + C,a, 16
Lf(\’, 6, t)B dV d@ = (CU(E)), (8) Sm 4 ml(F:; r,u)( i J) (O)> C 2 ( )
@ ©
§ = <—— In (—)> (17
and (@) (@)
h=Cu(l = pin/ping¥s M = P, (18)
[ 105, 6000 dv d0 = G, ©) o o
where [(( Ydvde= [, [ J°_J7.( )dv dv,dv,dfde- where
notes integration over the whole sample space. It is also conve-
nient to define frequency-weighted means, which are indicated w \1?
by a tilde; for example, tiz = <(@) > (19
i = ()l {w) (0)  and
and Ring = e-o-i.'sl (20)
k= Huu o)), (11) ' The model constants are ascribed the values ¢? = 1.0, C, =

A Lagrangian approach is taken both in the modelling and
in the numerical method. With x*(¢} being the position of a
fluid particle at time #, other fluid-particle properties are defined
by, for example,

u*(6) = u(x* (1), 1) (12)

and

ot () = w(x(), . 13)
For constant-density homogeneous turbulence, one-point one-
time Eulerian and Lagrangian statistics are identical [8]. Conse-
quently f(v, 6; 1) is also the joint pdf of u*{(s) and @*(r); and
in particular we have {w*(¥)) = (w(x, 1)) and {u] (Ou; (D) =
(i1t ).

The idea of the stochastic Lagrangian modelling approach
is to construct stochastic processes u*(r) and w*{¢) that model
the corresponding fluid-particle properties, u*(#) and @*(1). In
the model of Pope and Chen [12, 13], w*(r) evolves according
to the Ito stochastic differential equation [31]

do* = —m*{w) dt{S,,, +C, [ln (w_*) - 33:”
(@)

+ {w)h dt + 0*2C,(w)o™)'"? dW.

(14)

In this equation, dw*(t) = w*(t + df) — w*(¢) is the infinitesi-
mal increment in w*; dW{r} is the increment of a Wiener process
W(r) which has the properties

{dW) =0, {(dW))=dr (15)

1.6, C, = 0.04, C,, = 09, and C,, = 1.0. (Here and below,
the notation has been simplified by omitting asterisks within
means. That is, {w) is wntten for {w*) etc.)

The velocity model is the stochastic differential equation

du} = —Tyu¥dt + D,(u*, w*, 1) dt + (Cko*)? dW, (21)
where W(r} is an isotropic vector-valued Wiener process (inde-
pendent of that in the w* equation), the increments of which
satisfy

(dW) =0, {dW,dW;)=d:é,. (22)
The drift term D is given by

bi(u* w*, 1) = —(% + % Co) (m)guf‘% Giu¥

3 -
- = CQA,‘;I(CU*“]' - (C!)Hj))

1 (23)

3k,
+ ZCOEAU%G")M!}*:

Here A is the normalized Reynolds-stress tensor
Ay = 30 (U U ), (24

and A is its w-weighted counterpart

(25)

Ay = Hwu ) {ety, ).

Then Aj;! denotes the i — j component of the inverse A™". (A



PARTICLE METHOD FOR TURBULENT FLOWS

detail—inconsequential here—is that A~! is the ‘‘modified de-
terminant’’ inverse (see [12]) which is finite even for singular
A.) Finally, G{—here taken to be zero—is a modeled tensor
function of A; and I';; a specific form is given by Haworth
and Pope [32, 33] and other specifications are comprehensively
discussed by Pope [34]. The single model consiant appearing
in the equation is C, = 3.5.

The physics embodied in these model equations is described
in the original works [12, 13] and reviewed in [11] and is not
discussed further here.

The joint pdf of u*(t) and w*(¢), denoted by f*(v, 8; 1), is
a mode] for the pdf of the fluid properties f(v, @, £). By standard
techniques [31, 8] from Eqs. (12) and (19), the evolution equa-
tion for £* is deduced to be

A I 1o
L= Loty - oD 00} + 5 CRo L
3 ) s LA
vl o () -2)]) oo
af* a2
— () % + Cl)r? 5o (40),

From a given initial condition f*(v, 8; 0), and for a specified
imposed mean velocity gradient 1";(r), this single equation de-
termines the joint pdf f*(v, 8; r) at future times. The remaining
coefficients in the equation (i.e., I, &, w, S, & and k) can be
expressed in terms of integrals of f*, for example,

I PO A
&E(r)-JSf(v,9,:)<w>ln(<w>)dvd9

(27)
{with {@) being obtained as the integral of #).

For the stochastic processes u*(¢) and o*(f), the boundary
values (u*= *w, w* = 0, and w* = =) are unattainable.
Consequently, Eq. (26) does not require boundary conditions
(see Karlin and Taylor [351).

3. PARTICLE METHOD

The numerical method developed here is a particle method
that provides an approximate numerical solution to the modeiled
joint pdf evolution equation, Eq. (26). The pdf f*(v, ; r} is
represented by an ensemble of N stochastic particles (typically
N = 100-10,000) which model fluid particles. At time ¢ the
nth stochastic particle has velocity u™(r) and frequency w'™(z).
The initial particle properties (u*(0), @®(0); n = 1,2, ... N)
are independent random samples from the specified initial joint
pdf f*{v, &, 0). Subsequently each particle evolves according
to the stochastic model equations—u®(r) according to Eq. (21)
and w"™(r) according to Eq. (14). These stochastic differential
equations are integrated in lime numerically in uniform time
steps Ar. (Tt is convenient to define particle properties in contin-
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uous time by linear interpolation between the discrete time
levels jA¢ integer j = 0. The restriction to uniform time steps
is readily removed.)

A basic requirement of the numerical method—conver-
gence—Iis that it converges to the true solution as ¥ — % and
At — 0. From the particle properties we define the discrete
pdf by

N
Ay, B0 = ‘EE () — V) @) — 8),  (28)

where &(v) is written for the Dirac delta-function product 8(z;)
S{vy) 8(v). It is reasonable to require that fy converge in distri-
bution to f*. But since such convergence is extremely difficult
to test numerically, we require instead convergence (in mean
square) of expectations. Consequently, for all test functions
(v, &) for which the mean

(@), o)) = [ 0. Ofv, ;D dvao  (29)
exists, we define the ensemble mean by
Q) ) = | O, O)futy, 6:1) dv do
(30}

N
= =2 0", 0",

Then we require {Q)—which is a random variable—to con-
verge to {() in mean square, i.e.,

lim 1im (@) = (@)) = 0. 1)

If a convergent numerical method (with given & and Af) is
used to obtain {Q}y at a fixed time s, the resulting numerical
error can be decomposed into three contributions:
(O — (@) = Tolt, Ay + By(1, N, Ap)
+ N7IRES, (1, N, Ar).

(32)

The first contribution is the time-stepping error defined as

To(r, Aty = {Q)= — (Q), (33)
where (). is written for lim_.{Q)y.

The bias By is the deterministic error caused by N being finite:

By(t, N, Aty = (@) — (D). (34)

A necessary condition for convergence is that B, tends to zero

as N tends to infinity. (In practice, {{(Q)y} is determined (to a
specified confidence) by averaging over independent trials.)
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The final contribution is the random-—or statistical—error
NT12£8,. Here ¢ is a standardized random variable (i.c., {£) =
0, (¢%) = 1), and the standard error S, is defined in terms of
the variance of {Q)y:

So(t. N, Ay = N var({Q)w). (35)
Asymptotically, as N tends to infinity, S, becomes independent
of N.

There are two primary considerations in the construction of
the numerical method. The first is the time stepping strategy;
that is, the method uwsed to integrate the stochastic differential
equations for each time step. The second is the use of variance
reduction techniques [36, 37] to reduce S, and, hence, the
number of particles required for a given accuracy.

Means, such as {u;u;) and (&), change on time scales propor-
tional to {ew)~". It is found, as expected, that accurate solutions
are obtained only if the time step is chosen so that {@) At is
small compared to unity. But it is important to recognize that
the stochastic differential equations contain a second time scale,
proportional to 1/w™ (for the nth particle). For Gaussian homo-
geneous turbulence (see [13]) w® is log-normally distributed
with In @™ having variance ¢ = 1. Hence, out of an ensemble
of 10° particles, say, it can be estimated that the maximum
value of @™ is likely to be about 40w )—but there is no absoluie
upper bound. It is highly desirable—and we find it possible—
to develop a scheme that for accuracy and stability does not
require @ Ar < 1 for all #.

A predictor—corrector method is used, which, in advancing
from time level j (t, = j A1) to level j + 1 involves the follow-
ing steps:.

1. The coefficients in the stochastic differential equations
are evaluated from ensemble means, based on the particle prop-
erties at 4.

2. The stochastic differential equations are integrated to
yield the predictor values at #.,, denoted by G"(r,,) and
A" (t11).

3. The coefficients are evaluated based on G"(z.,) and
&®™(t;,,) and averaged with those computed in step 1 to yield
second-order accurate approximations to the coefficients at
hp =t + fa).

4. Using the predictor particle properties and the coeffi-
cients at #,,, the sde’s are integrated from 7 to ¢, to yield the
new particle properties, u®(z,,,) and @™(t.,,).

For ordinary differential equations, this predictor—corrector
scheme is second-order accurate; that is, for fixed ¢, the time-
stepping error 7, varies asymptotically at Ar2 For the sde’s
considered here it is found that the dominant time-stepping
error varies as Ar*Z,

It is important to observe that the sde’s integrated are not
precisely those stated in the previous section for the coefficients
are based on ensemble means rather than on expectations. Thus
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the coefficients have random fluctuations (of order N 1), which
(among other effects) are responsible for the bias. For large N
it is found that the bias varies as N~' and, hence, is negligible
compared to the random error.

Variance reduction techniques are used to reduce the random
error, which arises from three sources: from the initial condi-
tions, from the Wiener processes, and frem fluctuations in the
coefficients. (While the fluctuations in the coefficients ulti-
mately stem from the other two sources, it is nevertheless useful
to consider it as a separate source.) The technigue used is to
eliminate the first two sources of statistical error in certain
controlled moments, namely (u), (@), and {#u;). The simple
way in which this is achieved for the initial conditions is
now described.

Letd*(0) and &™(0) (n = 1, 2, ..., N) be independent samples
from the specified initial distribution f*(v, #; 0}). An additive
correction to the velocities,

4(0) = 6(0) + u’, (36)
and a multiplicative correction to the frequency,
w™(0) = e*d™(0), 37

is then performed to yield {@)y = {w) and (&) = {u) = 0. (This
uniquely defines the constants u” and ¢, which are of order
N~'2) The velocities are then further corrected to

w™(0) = (8 + Lyi(o), (38)
where L;; is a lower triangular matrix {whose elements are of
order N™'%) uniquely determined by the requirement {(u;u;)y
= (u;;). Thus by these simple (order N~ '2) adjustments the

statistical error in the controlled moments is eliminated from
the initial conditions.

4. NUMERICAL INTEGRATION OF FREQUENCY

The fundamental idea behind the numerical integration
schemes developed for w*(#} here, and for u*(t) in the next
section, is to transform and decompose the equations so that the
stochastic component corresponds to an Ornstein—Uhlenbeck
(OU) process [35, 38,31]. Since an QU process can be described
analytically, the numerical integration of the stochastic compo-
nent is completely avoided and, since the OU process is station-
ary, the solution is stable for arbitrarily large time steps.

Starting at the general time level 4, = j A, the known fre-
quency of the general particle is w*(f;) and the task is to
integrate Eq. (14) to determine w*{z.,) (or &(#.,) on the pre-
dictor step).

The first ransformation involves the normalized time T,

0 = [ (o dr (39)
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The start of the time step is 7(r;) = 0, the end is denoted hy
T = 7(t;4;), and the mid-time is 7, = 37.

An infinitesimal increment in 7 is, for example, dw(7) =
a(r + d7)} — w(r), and W, denotes a Wiener process in T,
which has the infinitesimal variance

{dW(T)% = dr={) dr. 40
With these definitions Eq. (14) becomes
w*
do*(1) = —w* dT{Sw +C, []n (—%) - .5‘3]}
+ (o dr + 0*QC, e AW, (7).
Next, w*(7) is decomposed as
w*(1) = U7)z(7) + g(7), (42)
where
g =" (orh(r)ar’ @3)
and
zZ(7) =exp {—f: S, d'r’}. (44)
From Eqs. (41)-(44) we obtain
dQ(7) = (da*(1) — Qdz(7v) — dg(T)/z
= —(gl)S,dv— C, (Q + f) dr
(45)

[ (%5%) <]

+ (2C,a%)" (Q + f) AW, (7).

The first approximation is now made: in order to obtain
Q@ — Q0), Eq. (45) is integrated from 7 = O to 7 = 7
with the coefficients frozen at their mid-time values. Since
g{mn) = 0 and z(np) = 1, with frozen coefficients, Eq. (45)
becomes

a7y = ~C,Qdr [lll (£ ) - fgm]
{w)

+ QC, o0 AW (1),

(46)

where the constant coefficients {w},, and &, are estimates for
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{(w) and ¥ at 7,,. On the predictor and corrector steps, (@),
is approximated by

{w)n = (w1 (predictor)

= H{w*()v + (@@ )v]  (corrector) 7
and similarly for &£,,.
The final transformation is to define
x(7) = In[Q(7)/Q{0)]. (48)
Then from Eq. (46) we obtain
dx(1) = = Cydrlx — x=1 + 2C,0)"*dW.(1), (49)
where

Equation (49) is the strictly linear stochastic differential equa-
tion [38] corresponding to y(7) being an OU process (with
initial condition }{0) = 0). At time T the exact solution y(7)
is a Gaussian random variable which can be written
X7 = yol1 — e™7] + o[l — e 2712, (51
where £ is a standardized Gaussian random variable {{£) = 0,
=1
This completes the major steps in the solution for w*. It
remains to vnravel the transformations in order to obtain an
explicit expression for w*(#;.,), and to provide some detailed

specifications.
From Eqs. (42) and (48) we obtain

0*(7) = z(DU0) exp(x(7) + g(™ (52)
and
Q0) = (w*(0) — £(0))/2(0). (53)

The remaining quantities to be determined are integrals over
the time interval. These are approximated using the coefficients
frozen at 7. Thus the approximations are

7= {w) At,
8(m) = —g(0) = (w)iphinmin,

(54)
(35)
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and
Z{(T) = 1/z(0) = exp{—S.inTin), (56)

where ), and S, are evaluated similarly to {w),, in Eq. (45).
The final result for w*(#.) (or @{#,}) can now be written

@*(tj1) = @y exp {—?Smlfz

+ [l — e'Cx_’]I:&euz — o’

(57)
+ 1z —m( o )]
2 wl (w>|f2
+ Lol — e 7] ”2} + ';"?(m)lfzhuz,
where
Wy = w*(4) + 1T{whnhy,. (58)

On both predictor and corrector steps, once Eq. (57} has
been used to determine w™(z4,) (or @"z;,,)), a small variance-
reduction correction is made to remove the randomness in
{w(t;,1))x caused by the random variables & This correction is
based on a numerical solution of the exact equation for {w}:

d — 2
E(w) = —{@)(S, + ). (39)

Using a procedure similar to that for w*, an approximate solu-
tion for {@(#..)} is

{(ti1)} = (@i )y exp(—TSuip) + 17{@) il (60)
Thus the variance reduction technique is simply to apply the
same multiplicative correction to each particle frequency
" {r;,,) so that, after adjustment, the ensemble mean {(w{#))x
equals the mean given by Eq. (60).

The following are clarfications and comments on the
above method:

i. In a more explicit notation, let ¢” be the standardized

Gaussian random variable used in Eq. (57) for the nth particle
on the jth step. These are all independent (ie., (£"&") =
8. 6). However, the same value of §j(-") is used on the predictor
and corrector steps.

2. In the degenerate case {(w)y = 0, the exact solution
®“(t,,) = 0 should be used, to avoid division by zero and
other difficulties.

3. An important special case is when some (but not all) of
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the particies have zero frequency, @™(f;) = 0 (some #). In these
circumstances, it is the intention of the model for h to be strictly
positive. An analysis of the sde shows that the leading order
terms in an expansion for w™Xf) are of order 7 and 7% In 7.
The numerical solution matches the expansion to this order. If
(contrary to the intention of the model) # is zero, then Eq. (57)
remains valid (since ey (which is zero) appears as w, In wy)
and yields the correct result: 0"z} = 0.

4. Inderiving the expression for w*(t.1,), Eq. (57), the only
approximation made is to replace the coefficients with their mid-
time values. This has two consequences. First, if the coefficients
were constant, then the solution would be exact for arbitrarily
large At. Second, for the general case of time-dependent coeffi-
cients, the use of mid-time values ensures that the scheme is
second-order accurate in time. (On the predictor and corrector
steps, {whp. Bq. (47), provides first-order and second-order
accurate approximations to {w(7,)}, respectively.)

5. [t may be observed that the predictor @t} is not used
in the corrector step, except to evaluate the coefficients,

6. The simple variance-reduction technigues used remove
all randomness in {w), except for that entering through the
coefficient 4.

5. NUMERICAL INTEGRATION OF VELOCITY

At the general time level ¢ = j Ay, the task is to integrate
the stochastic differential equation (Eq. (21)) for the velocity
u*(#) of the general particle in order to obtain u*(s.,).

In this section it proves convenient to use matrix notation
{more than tensor notation). So the stochastic differential equa-
tion for u*(f) (Eq. (21)) is rewritten

du*(t) = —Tu* dr + D(u*, w*, 1) dt 61)
(61
+ (Cow ™) AW(1).

5.1. Mean Velociry Gradients

The term in the mean velocity gradients I is the same general
form as the drift term D, and, hence, the two terms could be
treated together. However, with extensions to inhomogenous
flows in mind, a decomposition is used to separase the two pro-
cesses.

The particle velocity is decomposed as

u*(e} = y(r) + #(0), (62)
with
i G
ot T'u*, (GE)]
and
dz(r) = D(u*, w*, 1) dr + (Cozw*)”2 dW(n). (64)
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At the beginning of the time step (#), the initial condition for
v is specified as

v() = 2l(u*() Ar, (65)
and, hence, the initial condition for z is
z(1;) = w*(y) — 10(u*(y) A (66)

At the end of the time step, when z(#;, ) has been determined,
Eq. (63) is integrated by the trapezoidal method o yield the
implicit equation

Y(t5y) = =200 0 (.0) At 67)

or, explicitly,

I+ %F({:‘H) Atly(t.) = _%F(fjﬂ)z(l’jﬂ) A, (68)
where 1 is the 3 X 3 identity matrix.

The initial condition for ¥ is chosen so that (to a good
approximation) vy is zero at the mid-time 5., = Hy + L)
For given u*(z,), y(1) is a differentiable random function that
is of order Ar, in the interval [#;, £,,]. At the mid-time, the
mean of () is of order A2, and its variance is of order Ar°,

The value of z at ¢, is obtained by integrating Eq. (64) from
4 to t;,,. First substituting z + + for u*, we obtain

20 — 2(t) = |7 D@l + y['] @) 1) dif
’ (69)
+ [ @1 )2 aWe.

The integral of D is evaluated by replacing y(z') by its mid-
time value ¥(#,,,)—which is zero (to a good approximation).
Then Eq. (69) corresponds to the solution of the stochastic
differential equation

da(t) = D(z, *, 1} + (Cokw*)"? dW(2). (70)
In summary, for each time step, u™(#) is decomposed into
an order — At increment % (z) arising from the mean velocity
gradients, and a stochastic component z{(t). From the given
initial condition (Eq. (66)), z{1;,.() is determined from Eq. (70)—
which is independent of y(r). Then () is obtained from
Eq. (68).

5.2. Separation of Frequency Dependent Components

The task now is to integrate the stochastic differential equa-
tion for z(¢) in Eq. (70). It is essential to the approach to obtain
a stable, accurate solution fo this equation, even if w* Ar is
not small compared to unity. This is achieved by separating
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the w*-dependent terms and transforming the resulting equation
to a strictly linear stochastic differential equation, which has

an analytic solution.
The drift coefficient (Eq. (23)} can be decomposed as
D(z, w*, 1) = —w*Bz + D°(z, 1), (71)

where D! is independent of w* and B is the symmetric positive-
definite 3 % 3 matrix

(72)
Then z(z) can be decomposed into a stochastic w*-dependent

part R(#) and an order-A¢, differentiable, w*-independent part
V(1) as follows:

2(t) = R() + V(@), a3
R(;) = (), V() =0, (74
AR(1) = —w*B(R + V) dt + (Cka®)? dW(),  (75)
O - o + V.0 (76)

3.3. Solution for R

The equation for R is simplified by introducing the particle-
dependent normalized time 7(1):

) = J :lco*(t') dr'. (77)

(Note that this is different from the normalized time 7 defined
in Section 4 for the w* equation.) As before, the start of the
time step is 7(5;) = 0, and the end is denoted by T = 7(f4)).
With all variables expressed as functions of 7, Eq. (75) trans-
forms to
dR(1) = —B(R + V) d7 + (Cok)'* dw(7), (78)
where the increments of the Wiener process w(r) have the
covariance matrix
{dw(dw)"y = drl = a*drlL (79
On the predictor step the coefficients B and ¥ are frozen at
their ensemble averaged values at # and 7 is approximated as
w*(#;) Ar. On the corrector step, the coefficients are frozen at
the average of their ensemble averaged values at f; and 7,4,
(based on predictor particle properties), and 7 is approximated
as dw*(1) + a&(t)) Ar
We recall that V(7) is of order At, is differentiable, and is
zero at the beginning of the step. Consequently, on the corrector
step (for R), a good approximation is
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V(7) = Vi3, (80)
where V is the predictor for V(7) (or V({z,)).

On the predictor step (for R), V(1) = 0 is an adequate
approximation, which (in order to unify the notation) we imple-
ment by defining ¥V = 0 on the predictor step.

With these specifications Eq. (78) becomes

dR(7) = —B(R + V#/7) d7 + (Cok)" dw(7) (81)
with B, V, and k being frozen coefficients.

This coupled set of three stochastic differential equations is
decoupled by transforming to the principal axes of B. Since B
is symmetric positive definite, it can be expressed as

B = QAQ', (82)
where @ is the real unitary matrix and A is the diagonal matrix
of real positive eigenvalues A;, A,, and A;. Thus, defining

r(7) = Q'R(7) (83)
and
?=QV, (84)
and premultiplying Eq. (81) by QT, we obtain
dr(1) = —A(r + ¥R dT + (CRYW dw(r).  (85)

(The same symbol is used for the Wiener process, since it is
statistically invariant under unitary transformations.) Since A
is diagonal, Eq. (85) consists of three independent equations
for r(7), r:(7), and r;(7). Omitting the suffices, each of these
scalar equations is

dr(t) = —A(r + 87/7) dr + (CoR)\2 dw (7). (86)
This equation is solved by observing that the quantity
py=ri + 2 -L (87)
is an OU process satisfying
ap(t) = —Ap(1)y d1 + (Cok)'? dw(7). (88)
The exact solution to this equation is
p(T) = p(0)e ™ + & [g—f (I-e '“_')] m, (89}

8. B. POPE

where £1is a standardized Gaussian random variable. Hence the
solution for r(7) is

(7 = r0)e ¥~ b (1 -1 f_h)
AT
(90

COE —2;(7”2
+ & H(l-e Dl

From the above solution for all three components of r(7).
the solution R(7) is obtained by transforming back to the origi-
nal coordinates:

R(7) = Qr(7). on
(A detail of some practical importance is the computational
evaluation of the exponential terms in Eq. (90); with x = A7,
these are Ef(x) = ¢, Ex(x) = 1 — (1 — Ei(x))/x, and
Ex(x) = (1 — Ey(x))". Apart from the expense of computing
exponentiais, the direct evaluation of E; (and to a lesser extent
E3;) is ill-conditioned. Instead, for E(x) we use the rational ap-
proximation

I —3x

Ex)=T7——"F57—"7F=.
R o g

(92)

from which similar approximations for £, and E; are obtained.
The formal order of accuracy provided by these approximations
is better than second order. For all x, the errors in E,(x) and
E;(x) are less than 2% and 3%, respectively. The error in E,(x)
is less than 1% for x < 1.3, but peaks at 10% at x = 8.)

5.4, Solution for V'

A straightforward predictor—corrector is used to solve Eq.
(76) for V(z;+,). The predictor is

V = ArDR(@), 1), (93)
and the corrector is
V(1) = At D%z, ), {(94)
where
2o =5 [R() + R(2) + V1. (95)
This completes the solution. The final result is
w¥ () = y() T R + V), (96)

where the three contributions on the right-hand side are given
by Eqgs. (68), (91), and (94).
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5.5. Variance Reduction

At the end of the predictor and corrector steps, the ensemble
average mean (z)y and covariance {z,z;)y contain statistical er-
rors arising from the Gaussian random variables £ = {£, &, &}
used in Eq. (30). By definition, the primary random contribution
scales as &€ Ar'?, whereas secondary contributions scale as
£ Ar¥. An expansion of the exponential in Eqg. (90) reveals
that the primary random contribution to R{7) is

P = & Cokw* AD'™, 97

Secondary contributions stem both from higher-order terms in
this expansion and from the dependence of V{(z.) on R(z:)
{Egs. (94) and (95)).

In this section a variance-reduction technique is described
which completely removes the primary statistical errars in (z}y
and (z;7;)y—that is, the errors arising from P. The central idea
is to compute estimates of {z) and {z;z;} (denoted by {z). and
{z;z;)en) that are free of primary statistical error. Then, as with
the initial conditions (Eqs. (36}, (38)) the particle velocities are
corrected to

I =1+ L)z" + 2, (98)

where the vector z¢ and the lower triangular matrix L are
uniquely determined by the conditions that (Z)y and (Z,Z; )y equal
{2}y and {z;7;}4. This correction is simple to perform; the issue
is the determination of the statistical-error-free estimates {z)u
and {z;z; Jan -

To a first approximation, the statistical error arises because
{£)y is not identically zero and because (££;)y is not identi-
caily &;.

Consider then, instead, the set of 4V random vectors denoted
by " (n=1,2,..,N;a =1, 2,3, 4), defined geometrically
as follows: Each vector 9 is on the sphere of radius V/3,
centered at the origin. For each n, the four vectors " {a =
1, 2, 3, 4) form the vertices of a regular tetrahedron. The
orientations of the tetrahedra are random, uniformly distributed,
and independent for each .

Since f®* 1s an isotropic random vector of length V3, it
follows that

My =0, (g = & 99

But most importantly, from the geometry of the tetrahedron,
we have

(100

-l 4
2 el —
4 21 " v
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and

—2 B = 8. (101)

That is, averaged over the four samples, the first and second
moments of B™ contain no randomaness.

Using the numerical method described earlier in this section,
for each of the N particles, starting from the initial condition
z(t;), four estimates (1, (@ = 1, 2, 3, 4) of 27(z;;,) are
obtained by replacing & by 9™ in Eq. (90). Then () is
defined by

N 4
AR L E E z["'a)(tju)

102
4Nn=] a=1 ( )

and similarly for {z:z;)u-
The primary statistical error in {z),y is

N o4
Py = (B) = 5 2 2, n™(Cko® An'%, - (103)

L
N

which is zero because of Eq. (100). The corresponding error
in (z,z; ) 18

1 N4
=—2 > 7" Cokat At

(Pin>4N - AN & <&

(P:Fp)

(104)
— 8, Cok{w)y At

which again is zero, in view of Eq. (101).

To summarize the variance-reduction method: using the tetra-
hedral random vectors %%, 4N samples 2"} of z(1,.,) are
obtained. The ensemble average mean (z),y and covariance
{zizjday of these samples are free of primary statistical error.
The values of z”(s;;,) obtained with the Gaussian random vec-
tors £+ are then corrected (Hq. (98)) so that their ensemble
mean and covariance equal {z},y and {z;z; ).

This procedure is applied after both predictor and corrector
steps. There is, of course, a computational cost to pay: For
each particle five estimates of z(#,,) must be generated (i.e.,
Z(t;1,), based on &, and 2"9(y,.)), based on ¥, & = 1, 2,
3, 4). But, as the results of the next section show, the benefit
far outweighs the cost. (A small computational saving stems
from the observation that, on the predictor step only, £™ does
not need to be Gaussian. Thus z™'%(1;,,), say, can be used for
7"(t,.,), reducing the required number of estimates to four.)

6. RESULTS

In order to examine the convergence, accuracy, and efficiency
of the numerical method, in this section results are reported
for two cases. The first test case, which is examined in the
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most detail, is of sheared Gaussian homogeneous turbulence.
An exact analytic solution is available, which greatly facilitates
precise testing. However, aspects of the numerical method—
particularly the treatment of particles with zero frequency—
are not tested in this flow. Consequently, a second test case
with a bimoda] turbulent/non-turbulent initial condition is also
examined (Section 6.5).

6.1. Sheared Gaussian Homogeneous Turbulence

For the class of homogeneous turbulent flows considered, a
particular flow is completely defined by the initial joint pdf
of u and w, f(v, 6; 0), and by the mean velocity-gradient
tensor ['(t), Eq. (4). For the first test case described in this
subsection, the initial condition is that #,{0), 1,(0), 4;(0) and
In{@{0)/{w(0)}) are joint-normally distributed with unit covari-
ance matrix. The means are {u(0)) = 0 and {w{0)} = 1. Thus
the initial joint pdf is

_ 1 0 SRR PPN |
f(v,B,O)—4W29exp{ 2v v 21n6 4}. (1053

Corresponding to simple shear, all the components of the
velocity gradient tensor are zero except for

a(l,
i) =%{"Z-
2

(106)

The specification of I'(r) is contrived so that a relatively simple
analytic solution can be obtained. The implicit specification is

T = Tl (40, (107)
where
T, = (1 + 3G VC, =~ 3.34, (108)

and C; = 3.5 is a model constant.

The model equations are constructed so that in Gaussian
homogeneous turbulence (as herey u*(r) and ln w*{¢) remain
joint normal, with u*(z} being independent of w*(f) [12, 13].
Furthermore, (u(f)) remains zero and the variance of In w*(f)
remains equal to ¢* = 1. Thus the joint pdf is completely
determined by the mean frequency {w{#)) and by the Reynolds
stresses {w:1;). The evolution equations for {w(r)) (obtained
from Eq. (14)) and for (uu;) (obtained from Eq. (21)) then
form a closed set. From the given initial conditions, the analytic
solution to these equations is given in Appendix A.

{The analytic solution is obtained using the true inverses
of A and A, rather than the modified-determinant inverses.
Consequently (for this test case only) the true inverses were
used in the numerical method also, so that the numerical solu-
tion should indeed converge to the analytic solution.)
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FIG. 1, Temporal evolution of statistics for the homogeneous shear test

case. Solid lines—exact solution; symbols—unumerical solution (¥ = 256,
Ar =iy O, kb O i O, mus A, (o).

In the tests to be described the statistics monitored are: £k,
(i), ), K = @i/, (o), pn = (@)™, and kik.
The first four invelve only b, the next two only @, while k/k
depends on both u and . The moments &, ¢}, (uyus), and (o)
are ‘“controlled”” by the variance reduction schemes, while the
remainder are not. The analytic solution for these moments is
given in Appendix A, while the values of the other statistics
are determined from the known joint-normality of @ and w:

pn=e B8 K=3 kik=1. (109)

On Fig. 1, the exact solutions for k, {u}), {muy), and {w)
(solid lines) are compared with ensemble average values, ob-
tained from the numerical procedure with N = 256, Ar = .
As discussed in Section 3, the observed errors can be decom-
posed into three contributions (Eq. (32)}: statisticai error, bias,
and time-stepping error. These three types of error are examined
in the next three subsections.

6.2. Statistical Error
The statistical error in an ensemble average (@} is measured

by the standard error:

So(t, N, Aty = VN var({Q ). (110)
Thus the root-mean-square statistical error is N™'25,. By per-
forming a large number M of independent trials, we can estimate
the variance of (), and, hence, S;.
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F1G. 2. Standard errors vs time: O, k: &, {aus); &, (o) @, %k (homoge-
neous shear, N = 256, At = f5).

For N = 256 and Ar = &, Fig. 2 shows the standard errors
in k, {uu), {w), and &k at different times, and their values at
¢ =1 are given in Table I. The error in {@) is extremely small
(5, = 107%). In the other controlled moments &, {3}, and {u,u,),
the error is initially zero and subsequently rises to modest
values. For the uncontrolled quantities (K, w,,, and k/k) it
varies little with time.

It is found that the standard errors are essentially independent
of M. over the range investigated (N = 128-4096) S, varies
by less than 10%. (An exception is §, which decreases weakly
with N.) Similarly, varying A¢ from & to § results, typically,
in a 10-20% variation in §y.

The efficacy of the variance reduction techniques can be

TABLE 1

Standardized Errors for Different Variance-Reduction Techniques

(0 5, S8/, 5515, Sy=1S,
k 0.68 4.1 1.0 4.1
() 0.81 3.2 1.0 3.2
(s 0.37 3.3 1.0 33
K 4.85 1.0 1.0 1.0
(@) 0.0012 1.1 1.000 1.000
s 0.22 1.0 1.0 1.0
Tk 1.28 1.1 1.0 1.1
T/Tww 1.21 1.0 1.21 1.00

Note. r = 1, At = 15, N = 256; §%*'—no variance-reduction; S%*—no
variance-reduction on (w); S¥—no variance-reduction on {uu,;); Sp—both
variance reductions used; T—CPU time required.
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seen from Table I. Without the variance reduction on {w), the
standard error S, increases a thousandfold (to 5 = 1.2), While
without the variance reduction for (i;u;), their standard errors
increase by a factor of 3 or 4. It may be observed, however,
that the variance reduction techniques have essentially no effect
on statistics other than those directly involved. Thus the stan-
dard errors in K, g, and k/k are little affected.

The final row in Table 1 shows the relative CPU times, T,
that are required. The variance reduction on {@) adds 1% to
the time, while that on {u;4;} adds 20%. But, as is now shown,
the benefit far outweighs this cost. The relative efficiency of
different Monte Carlo implementations is determined by their
quality [37], defined by

g=T'S3, (111)
where T’ is the CPU time required per particle. The smaller g
is, the better. If N particles are used, the total CPU time required
is T = NT', and the variance in {Q}y is S5/N. Hence, eliminating
N, we obtain

var({Q)v) = T'SH/T, (112)

or

T = g/var({Q ). (113)
In other words, the CPU time T required to achieve a specified
statistical error level, var({Q@}y), is directly proportional to g.
Taking Q = u?, it may be seen from Table I that with variance
reduction the quality (in arbitrary units) is ¢ = 1.21, while
without variance reduction it is g™ = 3.2 = 10.24. Thus,
the use of variance reduction decreases the CPU time required
by more than a factor of 8.

6.3. Bias
The bias By, in an ensemble-average statistic {Q)y is the
deterministic error caused by N being finite,

Bo(. N, Any = (@} — (), (114)

The sole source of bias is the statistical fluctuations in the
coefficients in the stochastic differential equations. If, instead,
the coefficients were non-random, independent of the particle
properties, then at any time ¢, the computed particle properties
u”(1), @™(r) would be independent, identically distributed, and
independent of N. It follows then that B, would be zero (since
{(QM) = {Q) in this hypothetical case).

A simple analysis suggests that B, scales as N". Let ¢ denote
the value of a particular coefficient on a particular time step
prior to r (When By is to be estimated). Now since ¢ is evaluated
as an ensemble average over the particles it is itself a random
variable. Thus we can write



344
T T ] T
0.005 T T T T T
®
o
o _
o8 o o
® <&
o .
DQ (0}
@]
®
0.01 | o) 4
L. Q -
-0.02 - ® N
O
C_ 1 L 1 ] L ] ] L]
0 0.005 0.01

FIG. 3. Deterministic error vs N7 O, k; ©, {wwer); @, i3 (homogeneous
shear, 1 = |, At = 1)

c=cy+ S.NTIRE (113)

where £is a standardized random variable and (to a first approxi-
mation) ¢, and S, are independent of N.

The dependence of {Q)y (and hence of By) on the value of just 2.5 X 107

¢ is expressed by the conditional expectation

g(@) = {(Qhlc=2). (116)
The expectation {{Q )y} can then be written
Q) = {g(en (117)
= {glco + S.N2EY), (118)
and, expanding about c,, we obtain
(@) = (glcr)) + 3g () SINT' + ON ). (119)

This analysis can be extended to consider every coefficient on
every time step and hence to reach the conclusion that B, scales
(to leading order) as N 7.

In a simulation the bias cannot be measured directly. The
direct measure is of the total deterministic error

Do(t, N, Ar) = (@) — (@)
= By(t, N, At) + T, (1, Ar).

(1209

But since, by definition, the time-stepping error is independent
of N, the N-dependence of B, can be studied through D,
Figure 3 shows the total deterministic error D, plotted against

S. B. POPE

N~ for the statistics k, {tu;), and k/k. The approximate linearity
of the plots confirms the scaling of B, with N ™" suggested by
the analysis.

This observed linear dependence is used to isolate B;. Using
the values at N = 1024 and N = 4096, D, is linearly extrapolated
inN"'toN™' = 0 (i.e., N = =) to produce an estimate of T.
Then By is obtained from Eq. (120). Figure 4 shows VB as a
function of N for the same statistics as Fig. 3. Again, the
approximate constancy of NBp as N varies by a factor of 16
confirms the scaling of By with N~'. For the other statistics
(not shown), beth NB ,: and NBy are less than 2 (in magnitude)
and exhibit variations with N of a similar level to those in Fig.
4. Both B,, and B, exhibit remarkable linearity with N, with
values of NB, = 0.01 and NB, = 0.28.

6.4. Time-Stepping Error

Of the three types of numerical error, the time-stepping error
is the most difficult to measure, since it requires the elimination
of the other two. This was achieved by using a very large
number of particles (N = 2'% = 2.6 X 10" and averaging over
(typically) M = 128 independent trials. As a result, the bias
can be estimaied to be of order 4/N = 1.5 X 107°; and the
rms statistical error to be (NM}71? =~ 1.7 X 107,

Figure 5 is a log—log plot of the time-stepping error | 7|
against the time step Ar at the time ¢t = §. For the frequency
{w), the time-stepping error, T,,, is essentially negligible. Even
with the largest possible time step (i.e., Ar = 3} the error is
, and it is evident that T, varies as Az?,

Of the other statistics shown (k, (%), {uu,), and k/k), the
time-stepping error in () is the largest. This is less than {072

0 T T T T T —T
< <
& <& Lo o
10 - -
NB,
=2.0 |- -
O
0
| C o} _
=3.0 [ ] ® 9 9
[ ]
®
1 1 ] | 1 1
128 256 512 1,024 2,048 4,096
N

FIG. 4. Bias times N vs N: C, k; , {uyu.), @, kik {homogeneous shear,
t=1,Ar=%).
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FIG. 5. Time-stepping error vs time step for homogeneous shear at 1 =
L0, & O i O, Q) A, {w)(10 X |T,|); @, k/k. Upper line has slope
1.85; lower line has slope 2.

and 107* for Ar = & and Ar = g5, respectively. It appears that
T3 varies approximately as Az'*, On the other hand, the smaller
errors, Ty and 7, , appear to vary as A¢'#,

For the statistics not shown (K and u,») the time-stepping
errors are smaller than the confidence interval in the results:
for all Az = %, with 95% confidence, | Ty is less than 3 X 1072
and |7} is less than 2 X 1074,

Figure 6 shows the same time-stepping errors at ¢ = 1. Again
IT,| is very small and varies as Ar% Of the other statistics,
(w15 now has the dominant time-stepping error, which varies
as Ar'™ Time steps of § and 3 suffice to reduce the time-
stepping errors below 1072 and 1077, respectively. As may be
expected, taking a single step of size A¢ = 1 produces large
time-stepping errors; but nevertheless the method is stabie.
For At = L and Ar = I the errors are less than 0.05 and
0.025, respectively.

In sommary, the results show that the numerical method is
stable for very large time steps and that the time-stepping
errors tend to zero as A tends to zero. This—together with
the previously established results that NB;, and 5, remain finite
as N tends to infinity—demonstrates the convergence of the
method as a whole. Over the range of time steps investigated,
the dominant time-stepping error increases as A’ p = 14,
One percent accuracy (i.e., |Tp| = 0.01) is achieved with
Ar{w(0)} = .

6.5. Bimodal Initial Condition

The second test case, reported in this subsection, 15 designed
to examine those aspects of the numerical method that are not

345

seriously tested in sheared Gaussian turbulence. In particular,
in this second case, the turbulence is distinctly non-Gaussian,
and {with probability 3) the important but singular initial condi-
tion w(0) = 0 is used.

In the absence of mean velocity gradients (i.e., I'; = 0}, the
turbulence evolves from bimodal turbulent/non-turbulent initial
conditions. The initial joint pdf can be written

F(¥, 8;0) = 3£(v, 6;0) + 3£, (v, 8, 0), (azh

where f, and f, are the conditicnal joint pdf’s of the turbulent
and non-turbulent fluid, respectively. The non-turbulent fluid
has the deterministic initial conditions: ,(0) = —1; u,(0) =
#:{Q) = () = 0. The turbulent fluid has the conditional means
w0 = (@) = 1, {w(0)) = (u:(0)), = 0; and w(0) and
In w(() are joint-normally distributed with the identity covari-
ance matrix. Thus the initial joint pdf is

£, 6:0) = 2 801 + 1) 8(02) 603) 8(6)

1 1 .
+mexp{—5 iwv,— 1) (122)

+v%+v§]—%ln0——%}.

The initial values of the monitored statistics are given in

10

{Tal

0.01

FIG. 6. Time-stepping error vs time step for homogeneous shear at ¢ =
1: O, k; O, {udy; ©, {ugus); A, {w). Upper line has slope 14; lower line has
slope 2.



The evolution of the controlled and uncontrolled moments
is shown on Figs. 7 and 8, respectively. Initially (i3} is three
times {13) because of the difference in the conditional mean
velocities (i), = 1, {,), = —1). The difference subsequently
decreases quite rapidly as the turbulence tends towards isotropy.
The non-Gaussian aspects of the turbulence are clear from Fig.
8. The kurtosis K is initially below the Gaussian value of 3,
but soon increases to exceed 4 before decreasing towards 3.
The ratio k/k increases to a maximum of 1.8 before begiiniting
to decrease to its asymptotic value of 1, Similarly wu,, gradually
rises towards its asymptotic value of ¢ 7" =~ 0.882. At the end

T T T
1.5 Q4 N
w | P
O
QO
1.0 - DOO 7
%
a OOO
u] Co
o &)
nflkng
u gy
05 My u -
“MAA
ey
D. 1 1 1
0. 1.0 2.0

]

FIG. 7. Temporal evolution of controlled statistics for the bimodal test
case: O, &k O, {udy; O, uds A, (0) (A1 = &, n = 2%,
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TABLE II ' ' !
o . ADBATECSSBAAL
Statistics for the Bimodal Test Case 40 A ‘MAA
A YV
@ ooy (e s¢ By <@> 2
A
k 13 0.6037 + 0.00016 0.29 —4.2 30 - A ]
{u) 1% 0.4097 + 0.00012 0.23 —2.6 A
wh ) 0.3989 + 0.00010 0.21 =30
K 24 4251 + (.0054 10. -16. a
{w) 4 034958 * 4 % 107 0.008 —0.006 o
. 2.0 - n
i LI 0.7676 = 0.0001 0.27 0.4
. vz o®
kik 12 1.6336 = 0.0015 2.7 —12.
@ Estimate of {({1)} obtaitted using Richardson extrapolation from results 1.0 - o m
with Ar = & (32 trials) and Ar = 135 (64 trials), and N = 2'¥. Statistical error ++++.H.+++++++++++++++H'++‘H'++
estimates correspond to 95% confidence interval.
* Results obtained at ¢ = 1 with Ar = %, N = 128-4096,
0. 1 I [
0. 1.0 20
Table IL (For this case {u3) is monitored in place of {(uuy) t
which is identically zero.) - .
FIG. 8, Temporal evolution of uncontrolled statistics for the bimodal test

case: A, K = @l +, pa = (wHo)?):; @, Tk (Ar = &, N = 2%},

of the observation period (+ = 2) these statistics are still signifi-
cantly different from their asymptotic values,

The numerical method is tested by examining statistics at
t = 1. This time was selected because it allows a substantial
evolution to take place, and yet the turbulence is still far
from Gaussian.

As before, it is found that the standard errors S, vary slightly
with A¢, but are essentially independent of N (at least for ¥ =
256). Their values at ¢ = 1 are given in Table II. For the
Reynolds stresses, Sp/{Q) is comparable to the values of the
Gaussian case, i.e., about a half. But for K and %/k, the standard
error is more than double.

The behavior of the bias is also similar to the previous case.
Asymptotically B, varies linearly with N™', with the values of
NB, given in Table II. For the Reynolds stresses and {(w) the
values are similar to the previous case, but those of X and
J/k are appreciably larger.

Although there is no reason to doubt it, for this case the
question of convergence as At tends to zero cannot be ad-
dressed, because an exact solution 1s not available. However,
by assuming that the method does indeed converge, we are
able to study the dependence of the time-stepping errors T,
on Ar. The converged (Ar = 0) solution is estimated using
Richardson extrapolation based on results obtained with Az =
& and Ar = 35 and N = 25 Then, for At > 0, the time-
stepping error T is estimated as the departure from this extrapo-
lated value.

Figure ¢ is a log-log plot of time-stepping errors against A¢.
As before, even with a single time step (Ar = 1) the time-
stepping error in (w)T,,) is remarkably small—less than 2 X
107°. And T, is found to vary approximately as Ar*%.
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At

FIG. 9. Time-stepping error vs time siep for the bimodal test at ¢ = 1:
O, k; O, {us O, (i) A, {w)(10 X |T.]); @, &/k. Upper line has slope 1%;
lower line has slope 2.3.

Of the other statistics shown, the error in & is largest, although
the others are similar in behavior and magnitude. For Ar = §,
% and 15, the errors are 0.06, 0.025, and 0.008, respectively.
Even for Ar = | (i.e,, a single time step) the method is stable,
The time-stepping error in these statistics appears to vary as
Arl’z'

For At = %, the time-stepping errors in X and u,5, are zero,
to within the confidence interval of the test.

6.6. Computational Considerations

For the zero-dimensional flows considered here, the com-
puter requirements are exiremely modest. For example, on a
Silicon Graphics {(SGI 4D 240 GTX) workstation, just 8 CPU
seconds are required for a run with 1024 particles and 32 time
steps. (Taking 3 Mflops as a nominal speed for the werkstation,
this implies about 700 floating-point operations per particle
per time step.) From this figure, the requirements for multi-
dimensional calculations can be roughly estimated by assuming
that the time required is linearly proportional to the number of
particle-steps taken. For example, for a 2D calculation with
100 particles in each of 1000 cells and 500 time steps, the
estimated time required on the same workstation is about 3} h.

While one run with 1024 particles requires just 8 s of CPU
time, to determine the time-stepping error to the required confi-
dence level vastly more time is required. For example, the
leftmost points on Fig. 6 were obtained by averaging over
M = 128 independent trials, each with 2 ~ 2.6 X 10 particles.
These computations were performed on a 32-node Intel iPSC/
860. The parallel implementation of the method—either parti-
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ticning the trials, or partitioning the particles—proved to be
straightforward, with essentially 100% parallel efficiency [39].

7. DISCUSSION AND CONCLUSIONS

A numerical method has been developed to integrate the set
of stochastic differential equations that form the basis of a pdf
turbulence model. These equations present several challenges:
they are stochastic; they contain two (sometimes disparate)
time scales (w)™' and (w*)™'; there is a singular behavior for
the initial condition w* = 0; and the coefficients in the sde’s
contain statistical noise.

A simple two-stage predictor—corrector time-stepping strat-
egy is adopted. The central idea behind the integration scheme is
to transform and decompose the equations so that the stochastic
components appear as strictly linear sde’s. Then analytic solu-
tions to these equations (with frozen coefficients) are used, thus
ensuring stability and low time-stepping errors.

The numerical method has been implemented and compre-
hensively tested for two test cases. The results clearly demon-
strate the stability of the method for large time steps, and its
convergence as Ar tends to zerc and N tends to infinity.

Three types of numerical error are identified: statistical error,
Sp; bias, By; and time-stepping error, . The first two errors
depend primarily upon N and scale as S, ~ N7'% and B, ~
N7 Consequently, for sufficiently large N (typically N > 200
for the present tests) the statistical error dominates.

For the velocity equations, a variance-reduction technique
has been developed, which is extremely effective at reducing
the statistical error. For a given error tolerance, it reduces the
CPU time required by more than a factor of 8. In the two test
cases, with N = 100 the rms statistical error in the turbulent
kinetic energy k is 7% and 3%, respectively, With N = 1000
it is 2% and less than 1%.

The second test case (with bimodal initial conditions) pro-
vides the more severe test of the time-stepping errors, With
non-dimensional time steps of (w) Ar = {5 and 35, the time-
stepping errors in & are 2.5% and 0.8%, respectively. The domi-
nant time-stepping errors appear to vary as Ar™?, whereas the
same predictor—corrector scheme applied to ordinary differen-
tial equations would yield T, ~ Af? (i.e., second-order accu-
racy). While second-order accurate methods for sde’s are avail-
able {e.g., [28-30]), the present approach was adopted because
of its stability properties. As observed in Section 3, the
frequency w* of some particle can be expected to be 40
times the mean {w); and the characteristic time scale in the
sde for u* is (3Cyw*)™". Thus the apparently small time step
{w) Ar = {5 may, in fact, be quite large for some particles, e.g.,

%ng* At=25(£) {w) At = 6. (123)

8 \{w)

In convergence, stability, accuracy, and efficiency the numer-



348

ical method developed here is quite satisfactory. It provides
the basic integration scheme for multi-dimensional particle
methods to solve the velocity-frequency joint pdf equation for
inhomogeneous turbulent flows.

APPENDIX A: ANALYTIC SOLUTION FOR SHEARED
GAUSSIAN HOMOGENEOUS TURBULENCE

For the case considered (see Section 6.1), it can be deduced
from Eq. (14) or (26) that (@} evolves by

%(:) = —{(w)S,. (124)
where (from Egs. (16), (107)) §, is constant:
8o = —33C, + Caa. (125)
From the mitial condition {w(0)} = 1, the solution is
(w®) =1 +5,)" (126)

The Reynolds-stress equations are solved in the normalized
time variable

)= fﬂ (") dr". (127)
From Eq. (125) we obtain
6) = S2'In(1 + £5,,). (128)

The evolution equation for the Reynolds stresses {u:;) (ob-
tained from Eq. (21) or (26)) is

d
EE(“M;) + <uiuf>rj! (129)

+ (wuly = —Blw) ((u,-uﬁ - %k 6,1) - %(g) 5

where
B=1+3C,. (130)
Substituting for I'; (Eq. (107)) and transforming to the normal-

ized time 7 (Eq. (127)), we obtain the following linear set
of equations:

k -1 =T, 0 k
a’i:r wuy | = 0 —-B -Ty|{ wud . (131)
(ud G 0 -8B Wd

5. B. POPE

This completely determines all the Reynolds stresses, since
(uius) and (uaus) are zero, (u) equals {ui) and, hence, (u}) =
20k — (u3).

The value of T'y (Eq. (108)) is chosen so that one gigenvalue
of the matrix in Eq. (131) is zero. It is then straightforward to
solve the linear system to obtain the general solution

k [

Polur) | = A4, | =1
Hud B
+ e~ BTIITA, cos(aeT)
) (132)
+ A, sinfer) [ B—3%
~4p
0
+ e FATA, sin(ar) — Ascos(ar))| « |,
aff
where
a= VB = /4. (133)

The constants, determined by the initial conditions, are

A =G+ THBHI + 218), (134)
Ay = %_AJ (135)

and
Ay =(3A — 1Ty (136)
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